Phylogenetic Analysis of Voltage Gated Ion Channels
نویسنده
چکیده
Article history: Received on: 27/12/2013 Revised on: 10/02/2014 Accepted on: 22/02/2014 Available online: 27/04/2014 Voltage-gated ion channels (VGICs) are among the most fascinating proteins because of their function to generate electrical activity in cells and are responsible for many of the most overt manifestations of life. Although VGICs are seen as being critical to animals, particularly those with complex nervous systems, they are relatively old proteins, some of which are well represented in diverse prokaryotes. The present investigation was carried out to highlight the utility of using an evolutionary approach to glean useful information about ion channel function and, by extension, about the properties of other types of proteins. A total of 8 common organism’s protein sequence for VGKC (Voltage-gated potassium channel), VGCC (Voltage-gated calcium channel), and VGSC (Voltage-gated sodium channel) were obtained from Uniprot and subjected to multiple sequence alignment using Praline & ClustalW. The phylogenetic trees were constructed using different methods in MEGA v5.05. The sequence alignment of VGSC proteins of different species revealed no consensus residue. In the sequence alignment of VGKC proteins, five residues (Isoleucine395, Arginine 400, Aspartic Acid 490, Cysteine 502 and Valine 519) were observed to have 70% conservation across different species, while Cysteine 489 was found to be 80% conserved across the species. The sequence alignment of VGCC proteins of different species revealed very little (~50%) conservation across the species. The nature of residue conservation in VGKC reflects that the conservation is majorly for larger amino-acids that help the protein to form channels. The trees obtained for VGKC and VGCC had a remarkable similarity of forming a monophyletic group which was shared by Xenopus or Rattus and Nocardioidaceae or Streptomyces. Contrary to the results of individual trees obtained for VGSC proteins by different methods, the consensus tree generated had a monophyletic group of Homo sapiens and A. gambiae and the group was found to be again very near to prokaryotic VGSC of Streptomyces. The present study is very much of clinical significance because it has revealed that ion channels also exist in lower organisms which are very much related to higher biological systems.
منابع مشابه
Voltage-Gated Sodium Channels Modulation by Bothutous Schach Scorpion Venom
Buthotus schach is one of the dangers scorpion in Iran that belong to the Buthidae family. Toxins are existing in venom scorpion, modulate the ion channels by blocking or opening the pore of the channel or by altering the voltage gating and useful as pharmacological tools. In the present study, we investigated the effect of venom and its obtained fractions by gel filtrations on electrophysiolog...
متن کاملLtter Phylogeny Unites Animal Sodium Leak Channels with Fungal Calcium Channels in an Ancient, Voltage-Insensitive Clade
Proteins in the superfamily of voltage-gated ion channels mediate behavior across the tree of life. These proteins regulate the movement of ions across cell membranes by opening and closing a central pore that controls ion flow. The best-known members of this superfamily are the voltage-gated potassium, calcium (Cav), and sodium (Nav) channels, which underlie impulse conduction in nerve and mus...
متن کاملModular assembly of voltage-gated channel proteins: a sequence analysis and phylogenetic study.
Voltage-sensitive cation-selective ion channels of the voltage-gated ion channel (VGC) superfamily were examined by a combination of sequence alignment and phylogenetic tree construction procedures. Segments of the alpha-subunits of K+-selective channels homologous to the structurally elucidated KcsA channel of Streptomyces lividans were multiply aligned, and this alignment provided the databas...
متن کاملPhylogeny unites animal sodium leak channels with fungal calcium channels in an ancient, voltage-insensitive clade.
Proteins in the superfamily of voltage-gated ion channels mediate behavior across the tree of life. These proteins regulate the movement of ions across cell membranes by opening and closing a central pore that controls ion flow. The best-known members of this superfamily are the voltage-gated potassium, calcium (Ca(v)), and sodium (Na(v)) channels, which underlie impulse conduction in nerve and...
متن کاملFluorescence imaging of electrically stimulated cells.
Designing high-throughput screens for voltage-gated ion channels has been a tremendous challenge for the pharmaceutical industry because channel activity is dependent on the transmembrane voltage gradient, a stimulus unlike ligand binding to G-protein-coupled receptors or ligand-gated ion channels. To achieve an acceptable throughput, assays to screen for voltage-gated ion channel modulators th...
متن کامل